Sobolev meets Poincark
نویسندگان
چکیده
We prove that a very weak form of the PoincarC inequality implies a Sobolev-Poincare ineq~iality in the abstract setting of metric spaces. Sobolev rencontre Poincare Version jkzngaise abrigie L e but de cette Note est la demonstration du theoreme 1 qui affirme que, dans le cadre tres general des espaces metriques, une inegalite fiaible de Poincare entraine une inegalite de Sobole\--Poincare. Ce resultat dont la preuve est elementaire a un certain nombre d'applications; parmi ses corollaires simples on trouve le theoreme de Saloff-Coste [I], theorem 2.1 et une caracterisation utile des puiils p-admissibles [ 2 ] . D e plus, il )a des relations interessantes du theoreme 1 a\-ec les resultats recents de Jerrison [3] et Franchi, Gutierrez et n-heeden [4]. Soit X un espace metrique. Nous disons que 12 c X remplit la condition de chaine C (A. LllI) avec A. 31 > 1 s'il existe une boule fixee Bo C (2 telle que pour chaque .r. E fl on peut trouver une suite de boules Bo B1. L12. d\eL les trois proprietes sunantes 1 AB, C R pour I = 0. 1 2 et B, est centree en I pour tout I suffisamment grand 2 Pour 1 > 0 B, est de ra!on 7 , (dlani 12) 2-' < I , < ilI ((liar11 R) 2 I 3 Pour tout 1 > 0, 11 T a une boule R, c B, n B,+l telle que B, U B,+l c MR, THEOREME 1. S o i t 12 E C (A, 1\1) un sous-eizscmble d 'un espa1.c. mitriqzle X . Adnzettons que 1~1 nzesure / I ilq'finie sur X a la propriiti d~ douhlement, /L ( 2 B ) < Ccl / L (B): Ll = Ll ( .r . r ) , .r: E 12, et r. < 5 tliarrrC2. ~4dmet tons encore que pour des ji~nctiolzs g > 0. g E L". 0 < p < x, u E L:<,,. (12, / I ) / ( / rersion ilhstrliite ile l 'ine~yaliti . f i ~ b l e de Polncare, soit ~>t;l.$ie pozu clzilqlte boule B telle qzie XB C R. A l u u il esiste k > 1 p i ne dipend qzte de p et C,,, et une i,uizstnnte C2 = C2 (C1. Cd. 11. k r A. -II) telle q1Oun i ~ i t l ' inegalitt globnle i/e Soholez,-Poinral.c;c suirante Sz k p < 1. on renzpla~e ~ L Q par uo , . MAIN RESULT. The purpose of this Note is the proof of theorem 1 which, roughly speaking. states that, in the very general setting of metric spaces. a weak Poincar6 inequality Note presentee par Hai'm BREZIS. 0764-4442/95/0320 121 1 $ 2.00 O Academe des Sc~ences 1212 P. Hajtasz and P. Koskela implies a Sobolev-Poincark inequality. This result has a number of applications and its proof is surprisingly elementary. In particular. the theorem of Saloff-Coste ([I]. theorem 2.1) is a very special case of theorem 1: also it provides an elementary characterization of 11-admissible weights [2] and it simplifies and extends some of the results by Jerison 131. and Franchi. Gutierrez and Wheeden [4]. Let X be a metric space. We say that 12 c X satisfies the chain condition C'(X. *\I). where A. 111 2 1. if there exists a distinguished ball B,, C 12 such that for every .I: E 12 there exists an infinite sequence of balls Bo. B1. B2. ... (called "chain") with the following properties. 1. XB, c (2 for i = 0. 1 , 2. ... and R, is centered at .I: for all sufficiently large i . 2. For i 2 0 the radius r. , of B, satisties 121-I (tliarn ( 2 ) 2-I < r., < (dial11 (2) 2 ' . 3. For every .I > (1 there is a ball R, c B, n B,+l such that B, U B,+l c AIR, . Here and in what follows. by B we always denote a ball and by tB. where t > 0. a ball concentric with B and with radius t times that of B. By C we denote a general constant which can change its value even in a single line. The above chain condition is different from the cornmonly used Boman's chain condition (cf: 14)). If Q c R" is a bounded domain with smooth boundary then it satisfies the C (A. AI) condition for all X 2 I . The following lemma and its corollary provide us with more sophisticated examples. LEMMA 1. Let (X, (1) he a rnetric space s~rch tlqczt bo~rtzded and closed set.s elre conzpact. A s s ~ l ~ i e tlzrrt the ~ i e t r i c (1 1zcr.s tlze propert! that for ever-! t ~ . o poi lit.^ O . h € ,y the di.sturzc.e ( / ( ( I . b ) is eyilul to tlze injirnirrn of the lengths qf ccontinuou.s ci1n.e~ that joirz c1 and h (in pnrticular L1.e assunie that sirch u cirrlle crI~va?..s exists). Tlzen tliere exists u slzortest path y ,from (7 to b. This cur\*e he1.s the ,follo~~~iri,q segnlent propertj. For el.erT z E y, (1 (a. h ) = d ( n . a ) + d ( a . b ) . This lemma is due to Busemann [5]. p. 25 (cf: [4]. p. 592). COROLLARY 1. Fix X > 1. Let the metric space (S. (1) firlfill the h p o t h e s i . ~ of the lenzrnn above. Then rlJer:\. blill B C S .satisjie.s the C (A. 211) conclitiorz rt.it11 ci certcrirl M ~vhicli depe1id.s on the choice qf' A. The main result of this Note reads as follows. THEOREM 1 . Let 12 C X. (1 E C (A. 31). A.ssirine that / I is c1 cio~lbling tnerisi~re: / I ( 2 B) 5 C:, / r ( B ) 1.17henever B = B ( : r . I . ) . .r E a, I . < 5 diain Q,,. Ass~rnir ~ J I C L ~ > 0, g E L1' ( i t , / L ) . (1 < p < x, u E L:,,,. ( ( 2 % 1 1 ) (Ire .such that the,follo~~,irzg abstnrct ~,er.sion o f the local wectk Poirlcare ineq~lality holds: \thenever XB c 1 2 arzcl r 1s tlze radius of the bull B Then there exist5 A. > 1 I . I ~ K / I depends on 11 ar~d the c/oublirzg constant C,, on/\, alld C'] = C2 (C1. C,,. 1). X . A. 111) ~ L K I Z thcit the follou zng plobc~l so hole^^-Pornt crrP irzequallt~ holcls If Xp < 1. we replace u s ) by u ~ , , . Here and in what follows u~ = Z L d p . Sobolev meets PoincarC 1213 R e m ~ ~ r k . If we know in addition that 6,, = log, C,! < p. then we can prove more. Namely. for ho = J). we get exponential integrability. and. for < 1). Holder continuity of u . Moreover. there is a two-weighted version of the above theorem where integration in the different sides in ( 1 ) and (2) is with respect to different measures. see [6]. Prooj: It suffices to assume u*,, = 0 and estimate ( f ll l k j l ) ' /"" . Let :r E At = < 0 (1111 > f ) be a Lebesgue point of 11. Let Bo. B1. B2. ... be a chain assigned to .I:. We have j ~ l ~ , A 111 (.r) j > t . ~ L B ~ , = 0 . Using the doubling property and PoincarC inequality ( 1 ) we compute
منابع مشابه
Invariant Tori of the Poincare Return Map as Solutions of Functional Difference Equations*
Functional difference equations characterize the invariant surfaces of the Poincark return map of a general Hamiltonian system. Two different functional equations are derived. The first is analogous to the Hamilton-Jacobi equation and the second is a generalization of Moser’s equation. Some properties of the equations, and schemes for solving them numerically, are discussed.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملConvex Sobolev inequalities and spectral gap Inégalités de Sobolev convexes et trou spectral
This note is devoted to the proof of convex Sobolev (or generalized Poincaré) inequalities which interpolate between spectral gap (or Poincaré) inequalities and logarithmic Sobolev inequalities. We extend to the whole family of convex Sobolev inequalities results which have recently been obtained by Cattiaux [11] and Carlen and Loss [10] for logarithmic Sobolev inequalities. Under local conditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006